Electron Paramagnetic Resonance Spectroscopic Evidence of Increased Free Radical Generation and Selective Damage to Skeletal Muscle Following Lightning Injury

Bailey DM, Bartsch P, Cooper MA. High Alt Med Biol. 2003 Fall;4(3):281-9

Hypoxia Research Unit, Department of Physiology, School of Applied Sciences, University of Glamorgan, South Wales, UK CF37 1DL. dbailey1@glam.ac.uk

The present case study examined changes in peripheral markers of free radical metabolism and skeletal/myocardial muscle damage 30 h after a mountaineer had survived a lightning storm, having experienced contact with what was considered to be "upward leaders" at 4200 m. Sea-level control data were available between 3 and 8 weeks prior to the altitude sojourn for comparative purposes. Follow-up measurements were obtained for the same individual 3 weeks following the incident after simulated exposure to the combined stresses of inspiratory hypoxia and physical exercise. Venous blood was assayed for molecular markers of skeletal [myoglobin and total creatine phosphokinase (CPK)] and myocardial [cardiac troponin I (cTnI)] muscle damage. Ex-vivo spin trapping with alpha-phenyl-tert-butylnitrone (PBN) combined with electron paramagnetic resonance (EPR) spectroscopy was incorporated for the direct detection of free radicals. The relative increases [post-exposure/preexposure x 100 (%)] in the concentration of the PBN adduct, myoglobin, and CPK in the "lightning blood" were markedly greater than those observed following the simulation study (PBN: 276 vs. 129%; CPK: 1130 vs. 182%; myoglobin: 205 vs. 115%). In contrast, no changes were observed for cTnI. A marked decrease in the PBN adduct, myoglobin, and CPK was observed within 2 h of completing the simulation study, following oral administration of water and lipid-soluble antioxidant vitamins in normoxia. These findings are the first to document lightninginduced free radical generation and selective damage to skeletal muscle in a high altitude mountaineer. Furthermore, free radicals may contribute to the pathogenesis of lightning injury, and dietary supplementation with antioxidant vitamins may prove of some benefit against associated tissue damage.